Search results

Search for "core level" in Full Text gives 86 result(s) in Beilstein Journal of Nanotechnology.

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • , chemical analysis on the NS-WOx films is conducted using XPS measurements. Figure 3a–d depicts the XPS core-level spectra of W 4f and O 1s for as-deposited and annealed films, each having a thickness of 6 nm. The W 4f spectra are deconvoluted into two major and two minor peaks using Gaussian–Lorentzian
  • for as-deposited and annealed films. (a, c) XPS core-level spectra for W 4f and O 1s, respectively, of a 6 nm as-deposited WOx film. (b, d) W 4f and O 1s spectra of the film after vacuum annealing. (a, b) and (c, d) VCPD maps of, respectively, as-deposited and vacuum annealed WOx films having
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Properties of tin oxide films grown by atomic layer deposition from tin tetraiodide and ozone

  • Kristjan Kalam,
  • Peeter Ritslaid,
  • Tanel Käämbre,
  • Aile Tamm and
  • Kaupo Kukli

Beilstein J. Nanotechnol. 2023, 14, 1085–1092, doi:10.3762/bjnano.14.89

Graphical Abstract
  • ][41] and a broader and less intense feature in the region corresponding to the Sn 5p states, which then corresponds to an eg state split in C4v symmetry [37]. In the Sn 3d XAS results (Figure 11, right panel), the Sn 5s states are dipole-forbidden for transitions starting from the Sn 3d core level
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • of oxidised cobalt CoO consist of a core level peak (Co2+) and a shake-up satellite (Co2+ (S)) [37]. The measured Co 2p3/2 peak consists of three features (Figure 5). This indicates the presence of metallic as well as oxidised cobalt (mainly Co2+). After fitting, the peak with a binding energy of
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • Table 2. The relative amount of the coloring ions evaluated by XPS is approximately 12 wt % in both samples. The XPS spectra recorded in the Al 2p core level region (Figure 4a,b,d) show a peak fitted with one component centered at 73.6 eV. This component indicates the presence of Al2O3 in all samples
  • detector), (d) sample 2 (low magnification, SE detector), and (e) sample 2 (high magnification, SE detector). Size distribution histograms of (c) sample 1 and (f) sample 2. XPS core level spectra. (a) Al 2p of alumina, (b) Al 2p of sample 1, (c) Cr 2p of sample 1, (d) Al 2p of sample 2, and (e) Fe 2p of
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • core-level spectrum of (A) C 1s, (B) O 1s for GO, (C) C 1s, and (D) O 1s for ERGO samples, respectively. (A) TEM images of as-synthesized GO, ERGO synthesized in different electrolytes: (B) PBS pH 4.5, (C) pH 7, and (D) pH 9.6. (E) HRTEM image of ERGO in PBS pH 4.5. (F) SEM micrographs of as
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Investigation of a memory effect in a Au/(Ti–Cu)Ox-gradient thin film/TiAlV structure

  • Damian Wojcieszak,
  • Jarosław Domaradzki,
  • Michał Mazur,
  • Tomasz Kotwica and
  • Danuta Kaczmarek

Beilstein J. Nanotechnol. 2022, 13, 265–273, doi:10.3762/bjnano.13.21

Graphical Abstract
  • transitions using the Tauc method. Structure and elemental composition Surface properties The oxidation state of copper on the surface of (Ti0.48Cu0.52)Ox thin film was analyzed with the XPS Cu 2p core level spectrum (Figure 6). The Cu 2p core level has split spin–orbit components with ΔBE of 19.8 eV and an
  • the presence of Cu2+ species related to the CuO oxide [48][49][50]. The XPS spectrum of the Ti 2p core level is presented in Figure 6b. The position of the Ti 2p doublet and the binding energy separation between Ti 2p3/2 and Ti 2p1/2 (marked in the figure as ΔEW) equal to 5.8 eV testifies the
PDF
Album
Full Research Paper
Published 24 Feb 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • . Instrumentation X-ray photoelectron spectroscopy (XPS) measurements were conducted with a PHI5000 VersaProbe II using monochromatic Al Kα radiation (1.486 keV). Survey scans (187.5 eV pass energy, 0.8 eV/step) and core level spectra (23.5 eV pass energy, 0.1 eV/step) of the elements C 1s, N 1s, O 1s, S 1s, Ru 3d
  • . Therefore, the core level spectra of C 1s, Ru 3d, and O 1s have been recorded after each growth step and the obtained values are given in Table 1 (see Supporting Information File 1 for in depth analysis, section 4, and XPS core level spectra, Figure S4). Overall, the result of the detailed XPS analysis is
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • decrease of transmittance at 350 nm is caused by absorption of glass substrate and can be noticed for other samples as well. TiO2:Eu-based structures The chemical composition of the luminescent titanium dioxide doped with europium was examined using XPS. The spectra of Ti 2p and Eu 4d core level electrons
PDF
Album
Full Research Paper
Published 22 Nov 2021

Interface interaction of transition metal phthalocyanines with strontium titanate (100)

  • Reimer Karstens,
  • Thomas Chassé and
  • Heiko Peisert

Beilstein J. Nanotechnol. 2021, 12, 485–496, doi:10.3762/bjnano.12.39

Graphical Abstract
  • transfer with the oxide substrate was observed, involving both the macrocycle and the central metal atom. For molecules of the first monolayer, an electron transfer to the central metal atom is concluded from transition metal 2p core level photoemission spectra. The number of interacting molecules in the
  • semiconducting substrates, such a charge transfer would result in an interface doping of the substrate. Depending on the charge carrier concentration, the doping is accompanied by a shift of the Fermi level, visible as rigid energy shifts of all substrate-related core level spectra in photoemission. As an
  • bending at the interface (p-type doping). Adsorbate-related core level spectra are shown in Figure 3 for different film thicknesses. For the 0.25 nm and the 0.45 nm film, the Sr 3p1/2 background was subtracted in the C 1s spectra. Original data and the background procedure are shown in Figure S5
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2021

Free and partially encapsulated manganese ferrite nanoparticles in multiwall carbon nanotubes

  • Saja Al-Khabouri,
  • Salim Al-Harthi,
  • Toru Maekawa,
  • Mohamed E. Elzain,
  • Ashraf Al-Hinai,
  • Ahmed D. Al-Rawas,
  • Abbsher M. Gismelseed,
  • Ali A. Yousif and
  • Myo Tay Zar Myint

Beilstein J. Nanotechnol. 2020, 11, 1891–1904, doi:10.3762/bjnano.11.170

Graphical Abstract
  • core level spectrum of Fe 2p is presented in Figure 2b. On the deconvolution of Fe 2p3/2, peaks are observed at 710.4 and at 712.6 eV. The first peak can be attributed to Fe3+ in free MnFe2O4 nanoparticles, whereas the second peak corresponds to Fe3+ in FeOOH [23], resulting from the adapted
  • depth of XPS (approx. 10 nm), it is anticipated that all the core level spectra shown in Figure 8 are from the MnFe2O4 particles attached to external surface of the tubes rather than from those in the inner cavities of the tubes. The XPS survey scan of MnFe2O4/MWCNTs (Figure 8a) shows photoelectron
  • lines of C, O, Mn, and Fe. The highest-intensity peak is noticed for carbon, which corresponds to the carbon content of MWCNTs. The deconvolution of the core level energy peak of C 1s identifies two components at 284.5 and 285.5 eV, respectively. The first peak is ascribed to sp2-hybridized and the
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • interfaces. Results The determination of the vertical adsorption heights of F4PEN in (sub)monolayers on Ag(111) relied on high-resolution core level spectra, which are shown in Figure 1 (additional XPS spectra are shown in Supporting Information File 1, Figure S1). Following the assignment of the F4PEN core
  • the screening effect (also often called the mirror force effect), which is commonly observed in photoemission data of organic thin films on metal substrates [71][72][73]. The absence of nonrigid shifts of the core level peaks between the mono- and multilayer coverage, which usually occur in the case
  • in situ under ultrahigh vacuum (UHV) conditions. The analysis chamber (base pressure: 3 × 10−10 mbar) contained a VG Scienta EW4000 HAXPES hemispherical photoelectron analyzer, which was mounted at 90° relative to the incident X-ray beam. The reflectivity and photoelectron core level spectra of all
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • a promising n-type contact for molecular electronics. Core level spectroscopy Finally, we investigated the chemical structure by means of X-ray photoelectron spectroscopy (XPS) at normal emission. In Figure 5 the N 1s, the C 1s and the B 1s spectra for DBP on bare Ni(111) as well as on h-BN/Ni(111
  • background [43]. The peak positions of each core level are summarized in Table 3. The comparison of the C 1s level of DBP on bare Ni(111) with DBP on h-BN/Ni(111) shows that the peak positions are shifted against each other, and the line width of the latter is significantly reduced. The binding energy shift
  • corrected according to the photoionization cross sections of Yeh and Lindau [44]. For each spectrum the binding energy of the core level is marked by vertical black lines. The black arrow points to an unassigned second component of the N 1s level of the less ordered DBP layer on h-BN/Ni(111). Comparison of
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • graphene lattice. In the Raman spectrum of the FLG-Ce6 hybrid nanomaterial, the D band is overshadowed by the Raman signals of Ce6. Figure 1c shows the X-ray photoelectron spectroscopy (XPS) spectra of the hybrid nanomaterial and Ce6. The O 1s core level spectrum of the hybrid nanomaterial FLG-Ce6 is
  • mainly composed of two peaks at 530.9 and 532.4 eV corresponding to HO–C and C=O, respectively. There is a peak at 535.4 eV corresponding to the chemisorbed oxygen on the hybrid nanomaterial, which is almost absent in the Ce6 sample. The N 1s core level spectrum is the same in the hybrid nanomaterial as
  • in the Ce6 sample because the nitrogen contribution comes only from Ce6 in both cases. The spectrum analysis allows the two types of chemical bonding of nitrogen present in the Ce6 structure to be distinguished. The C 1s core level spectrum in the hybrid nanomaterial is mainly composed of a peak at
PDF
Album
Full Research Paper
Published 17 Jul 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • molecules has a central protrusion (marked by the black arrow); b) empty-state RT-STM image of a SnPc monolayer after annealing at 200 °C; c) XPS spectra of the Sn 3d core level; d) XPS N 1s and C 1s core-level peaks measured for a SnPc monolayer before and after sample annealing at 200 °C, which do not
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • observed using XPS. The spectral contribution of 5s and 5p electronic states to the valence band spectrum of Ag is negligible and the valence band mainly originates from 4d electronic state. The Ag 3d valence-band and Ag 4d core-level spectra are shown, respectively, in Figure 12a and Figure 12b. It should
  • (FWHM). FWHM values both of the valence-band and core-level spectra are clearly larger for the nanostructures than for the bulk material. The changes in the peak position originating from the d bands and the broadening of the FWHM can be attributed to the modified electronic structure [33]. In turn, it
PDF
Album
Full Research Paper
Published 25 Mar 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • identified in the spectrum of the NiMoO4@Co3O4/CA composite. The C 1s core-level spectrum can be deconvolved into three peaks, which correspond to the C–C (284.8 eV), C–OH (286.3 eV) and O=C–O (288.4 eV) bonds (Figure 4b) [34]. In Figure 4c, two peaks are observed at 780.9 and 796.6 eV corresponding to Co
  • spectrum where two characteristic peaks appear at 856.5 and 874.3 eV along with two shake-up satellite peaks with a spin-energy separation of 17.8 eV, corresponding to the Ni 2p3/2 and the Ni 2p1/2 levels of Ni2+ [37][38]. The Mo 3d core-level spectrum (Figure 4e) shows two main peaks at 232.4 and 235.5 eV
  • corresponding to the Mo 3d5/2 and Mo 3d3/2 levels of Mo6+, respectively [39]. Figure 4f shows the core-level spectrum of O 1s. It can be divided into two main peaks at 530.4 and 531.2 eV, which are attributed to typical metal–oxygen bonds and oxygen ions of low coordination numbers at the surface, respectively
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • is assigned to the stretching vibration of the C–N group, which is a residue of the thiourea decomposition [37][38]. In order to investigate the variation of the chemical states (CSs) of the S-doped (001)-TiO2 as a function of the RS/Ti, core level XPS of the Ti 2p, O 1s and S 2p regions was
  • TiO2 and TiOx for Ti [40][41] and TiO2 and –OH for O [42][43]. Moreover, the ratios of the CSs of Ti and O in TiO2 do not change significantly with RS/Ti when S-doping is carried out at 180 °C. The core-level XP spectra of the Ti 2p, O 1s and S 2p regions for all the S-doped samples synthesized at 250
  • -S0, 2-S0, and 2-S2. The FTIR spectra of 1-S0, 1-S2 and 1-S5 (a); 2-S0, 2-S2 and 2-S5 (b). Core-level XP spectra of Ti 2p (a and d), O 1s (b and e) and S 2p (c and f) for 2-S1 and 2-S3. The solid line is the experimental curve, the dashed line is the fitted curve, and the open circles are the sum of
PDF
Album
Full Research Paper
Published 01 Nov 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • samples are presented in Table 3 together with the relative atomic concentrations. The high-resolution spectra of these core level transitions are also depicted in Figure 4a (In 3d), Figure 4b (Sn 3d) and Figure 4c (O 1s) [37][38]. The binding energy of the thermally treated samples is slightly shifted
PDF
Album
Full Research Paper
Published 25 Jul 2019

Synthesis of P- and N-doped carbon catalysts for the oxygen reduction reaction via controlled phosphoric acid treatment of folic acid

  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1497–1510, doi:10.3762/bjnano.10.148

Graphical Abstract
  • –Emmett–Teller (BET) surface area was evaluated by N2 adsorption measurements (BELSORP Max, Microtrac BEL). Samples were placed in a tube and degassed at 200 °C for 2 h under dynamic vacuum conditions. C 1s, N 1s, O 1s, and P 2p core-level X-ray photoelectron spectra were recorded using Mg Kα radiation
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • of the MoS2 sheets. Components originating from MoS2 and MoO3 were identified in the core-level Mo 3d spectrum (Figure 3). The positions of the individual components are in agreement with previous reports for MoS2 and MoO3 [37][38]. The deconvolution revealed that the MoO3 content was about ≈12 atom
  • MoS2-based composite paper showing its size and flexibility. SEM micrographs of (a,b) plane and (c,d) cross-section images of the composite paper at different magnifications. Core-level X-ray photoelectron spectra of a) Mo 3d region, b) S 2p region, and c) C 1s region. Charging–discharging curves of
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • ]. The fine structure excited by ultrasoft X-ray (synchrotron) quanta close to a given atom’s core level absorption resonance has a very developed fine structure with all its features related to the density of electronic states. This at least allows for qualitative experimental information about the
  • ) spectra in turn represent transitions from the core 1s states of oxygen atoms to the free p-states in the conduction band. XPS is a direct experimental technique allowing the detection of the charge state of the atoms. High energy resolution XPS spectra of core level chemical shifts can give information
  • ) the binding energy was in good agreement with the binding energy in the reference sample (487.1 and 530.9 eV, respectively). The core level binding energy in the wire sample was at lower values of 486.6 (Sn 3d5/2) and 530.4 (O 1s). These values were also observed on natural oxides formed on pure
PDF
Album
Full Research Paper
Published 08 Jul 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • nature of the bonding of the thiols we investigated the chemical shift of the S 2p core level. The S 2p spectra acquired on the samples show a doublet structure that can be ascribed to the S 2p3/2 and S 2p1/2 peaks. All spectra were fitted using a 2:1 peak area ratio and a 1.2 eV splitting, as shown for
  • MWCNTs. N/T: Not tested. Supporting Information The chemical structure of the different thiols tested. Representation of self-assembled monolayers. Raman spectroscopy of carbon nanotubes. Deconvolution of the C 1s core level peak for Au-MWCNTs using XPS. Table with the relative abundance (%) analyzed by
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • the C 1s spectrum correspond to C–C bonds in rGO, N–C=N/C–O bonds in g-C3N4 and rGO, and C=O and O−C=O bonds in rGO, respectively [33][34]. The core-level N 1s profile shows (Figure 3c) three deconvoluted peaks at binding energies of 398.8, 400.6, and 401.8 eV, which are attributed to the sp2
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • ]. The Ti 2p core level spectra are the same for all three sample types, here exemplified by thymine Ti 2p (Figure 12). The 457.8 eV binding energy of the Ti 2p3/2 peak point towards predominant Ti–O-type bonding. We confirmed this by the 5.8 eV split spin-orbit energy difference. In addition, we
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Raman study of flash-lamp annealed aqueous Cu2ZnSnS4 nanocrystals

  • Yevhenii Havryliuk,
  • Oleksandr Selyshchev,
  • Mykhailo Valakh,
  • Alexandra Raevskaya,
  • Oleksandr Stroyuk,
  • Constance Schmidt,
  • Volodymyr Dzhagan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2019, 10, 222–227, doi:10.3762/bjnano.10.20

Graphical Abstract
  • analysis, that confirmed the presence of all the expected elements (Cu, Zn, Sn, S), while high-resolution core-level spectra were acquired to prove the oxidation state expected for the CZTS compound (Supporting Information File 1, Figure S2). The Raman spectra presented in the manuscript were acquired with
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2019
Other Beilstein-Institut Open Science Activities